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Abstract: 
Forty years ago Jenike and Johanson developed the flow-no-
flow equations used to predict stability of bulk solid structures 
in silos and hoppers. These equations were developed into 
a theory that has been used to design process equipment 
to handle cohesive materials. The basis of the theory is a 
limiting stress state analysis of a bulk material forming a 
cylindrical pipe (rathole) around or an arch across the hopper 
outlet. Reliable process operation requires that these two 
cohesive obstructions be avoided to achieve proper flow of 
bulk materials through process equipment. Today, industry 
uses a variety of flow aid devices to overcome these stable 
flow structures. One such device is aeration pads which are 
used to maintain fluidization of fine powders and decrease 
cohesive behavior of bulk materials. Alternatively, air blasters 
can inject a given quantity of gas into the bulk material creating 
large transient gas pressure gradients that may destroy these 
cohesive structures in process equipment. It is important to 
note that air blasters may destroy cohesive structures provided 
they are placed in close enough proximity to the stable rathole 
and with sufficient frequency along the axis of the bin or 
around the bin perimeter. Although these aeration techniques 
work, a full understanding of the reason is lacking. Currently, 
both the placement and required number of these flow aid 
devices are based on practical experience and not sound 
theoretical principles. This paper addresses this knowledge 
void by adding the gas pressure gradient terms to the rathole 
stability analysis performed by Jenike, thus extending the 
flow-no-flow rathole analysis to aerated conditions.
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Introduction: 
Processing and handling of fine materials is often difficult. 
These materials sometimes behave as cohesive masses. 
However, the addition of air often creates a condition wherein 
bulk materials exhibit less cohesive tendencies. One example 
of using aeration to overcome cohesive flow problems is the 
use of air pads in flat-bottom ash silos to keep material in a 
flowable condition. Standard rules of thumb suggest that a 
minimum of 15% of the silo bottom should be covered with 
air pads to maintain ash in a flowable state. Air flow should 
be used during filling and maintained during storage. Since 
a sound theory of cohesive aerated behavior does not exist, 
current bulk solids practitioners’ err on the side of safety 
and often recommend that the entire bottom be fluidized 
with the hope that more aeration will provide some safety 
margin for design. The placement of these pads is more art 
than science and the amount of air injected is empirical and 
based on past experience. If the injection system fails, the 
material within the silo looses entrained gas and cohesive 
ratholes result. The relationship between rathole stability 
and degree of aeration is not well understood. This paper 
addresses a theoretical approach for stable rathole formation 
in aerated hoppers and bins. It is an extension of the critical 
rathole stability criteria initially proposed by Jenike [1].

Two conditions that must be satisfied for trouble free process 
operations using powder materials are that the outlet must be 
large enough to overcome cohesive arching of bulk materials 
and that the active flow channel must be larger than the critical 
rathole dimension. The Jenike arching criteria equations [1] [2] 
are often used to compute the arching tendency. Alternatively, 
the arching index approach [3] is used to compute critical 
arching dimensions. However, reliable flow of bulk material 
from process equipment also requires that the induced flow 
channel be large enough to prevent the formation of stable 
ratholes. Jenike also developed a limiting stress state analysis 
for prediction of critical rathole diameters in funnel flow bins. 
This method has been used with moderate success over the 
last 40 years to provide a conservative estimate of the critical 
rathole diameter. However it does have some limitations. 
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This paper attempts to address one of these limitations.

Both the arching and rathole conditions must be overcome 
to assure reliable flow. This paper focuses on only the 
rathole tendency of bulk powders and deals directly with 
the influence of aeration on the ability of a powder material 
to form a stable rathole. It will leave the formation of arches 
in aerated material to some future work. It should be noted 
that, quite often, in funnel flow bins the critical rathole 
dimension is the controlling factor in successful handling 
system operation. The rathole flow-no-flow criteria states 
that the active flow channel induced in the material must be 
greater than the critical rathole dimension for reliable flow to 
occur. The question then arises as to how this critical diameter 
changes during powder aeration. Two things are required to 
determine the effect of aeration on cohesive flow obstructions. 
The relationship between aeration and cohesive flow 
properties must be established and the stability of cohesive 
structures under aeration conditions must be understood.

Recent work by Barletta [4], Johanson and Barletta [5], and 
Kline et. al. [6] makes measurement of unconfined yield 
strength as a function of aeration possible. These aerated flow 
property measurements can be used to predict critical rathole 
dimensions for aerated process equipment. Their work suggests 
there is a relationship between aeration and unconfined 
yield strength. However, this effect does not become a 
dominant issue until the gas pressure gradient acting in the 
powder approaches the weight density of the bulk powder.

From a theoretical point of view Hill and Cox [7] analyzed 
the limiting stability rathole equations but did not include gas 
pressure terms. There is limited discussion in their paper about 
the validity of their new critical rathole dimension predictions 
and they neglected to add the gas pressure gradient terms. 
Hence, their analysis can not handle aerated materials. The 
following paper addresses the rathole stability in aerated 
conditions and presents an analysis similar to the one proposed 
by Jenike, except it includes gas pressure gradient terms.

Derivation of the critical rathole equations 
The rathole derivation as defined by Jenike is a critical 
slope stability calculation and assumes a perfectly 
plastic limit analysis. The governing equation is called 
the equilibrium equation and is simply the equation of 
motion with the acceleration terms omitted (see Eq. 1).

This results in the following vector component equations 
when expressed in cylindrical coordinates see Figure 1.

Normal stress in the θ-direction is assumed to equal the 
major principal stress in accordance with the Har Von Karman 
hypothesis, which states that the hoop stress in bulk material 
is equal to either the major or minor principal stress. This 
assumption implies that the shear stresses τrθ and τθz equal 
zero. The critical rathole dimension for a given piece of process 
equipment should depend on the strength evaluated at 
the greatest solids contact stress in the equipment. Janssen 
[8] analyzed the stresses in cylindrical silos and found an 
asymptotic relationship for the stress as a function of the axial 
coordinate. In a silo, the largest solids stress occurs far below the 
top material surface. At this location, the Janssen stress profile 
produces a condition where the normal stress σz is constant 
with bed depth. Hence, the terms Μσz/Μz and Μτrz/Μz equal 
zero. These assumptions result in the simplified Eq. 4 and Eq. 5.

Figure 1: Definition of stress components
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These equations are transformed using the scale 
variable proposed in the original rathole analysis. 
This transformation relates the radial position to a 
new variable η as given by Eq. 6 and Figure. 2.

The new rathole stability equations become the following:

They are similar to the equations originally derived by Jenike, 
but include gas pressure gradient terms. Eq. 8 can be integrated 
directly, subject to the boundary condition of zero shear stress 
at the rathole surface and nearly constant gas pressure gradient 
in the axial direction, to yield Eq. 9 describing the shear stress 
as a function of radial position away from the rathole surface.

Eq. 7 and Eq. 8 can not be solved directly, since the 
number of unknown variables exceeds the number of 
vector component equations. A constitutive equation 
relating the normal stresses σθ and σr is required in 
order to provide closure to this system of equations.

The concept of a perfect plastic material provides the necessary 
closure equations. When stress levels reach a critical value, 
yield will occur. The perfectly plastic assumption uses the 
stress state at the point of yield as the stress state for all plastic 
flow conditions. Obviously, this only applies to the condition 
of incipient flow or yield. Such an assumption can not hope to 
predict flow behavior between the incipient flow and continual 
deformation conditions. Consequently, the model derived 
from these equations may predict the incipient failure of a 
rathole, but will not give any information describing the flow 
after initiation. This limitation of the theory is acceptable for 
this rathole stability analysis since the goal of this work is to 
predict the incipient failure of a rathole. The yield locus then 
becomes the constitutive equation required for closure of the 
equation of motion. The yield locus is the collection of shear 
stress (τ) normal stress points (σ) that describe incipient failure 
of a bulk material subjected to a prescribed compaction stress. 
Figure 3 shows a typical yield locus. The bold line represents the 
collection of all stress states that will result in yield of the bulk 
material. This line terminates at a stress condition given by the 
largest Mohr circle. All failure conditions on the yield locus arise 
from subjecting the material to the compaction stress state 
described by this termination Mohr circle and then shearing 
the preconditioned bulk material at a lower stress state. There 
is an unique yield locus for each compaction stress state. A 
linear approximation to this yield locus provides the constitutive 
equation required for closure of Eqs. 7 and 8. This relationship 
allows the stress tensor components to be expressed as a 
function of the mean stress. It is also a function of the direction 
between the major principal stress and coordinate axis.

Figure 2: Rathole schematic

Figure 3: Definition of limiting stress state for rathole analysis
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This definition is identical to the limiting state constitutive 
equation used by Jenike in his original rathole analysis. It is 
important to note that the average stress defined in this figure 
is measured from the apex of the yield locus and not from the 
origin. This results in Eqs. 10 through 13 for the stress equations.

Eq. 9 can be substituted back into Eq. 8 to 
yield a relationship between η and τrz.

Eq. 14 can then be combined with the Mohr stress yield 
conditions to provide a relationship between the mean 
stress (σ) and principal stress direction angle (ω).

Eq. 15 provides a means of relating mean stress to the principal 
stress direction. It arises from the solution of the axial equation 
of motion subject to the simple boundary conditions and 
assumptions outlined above. The radial component of the 
equation of motion can also be expressed as a function of 
mean stress (σ) and principal stress direction (ω). This can be 
done by substituting Eqs. 10 through 13 into Eq. 7 to yield Eq. 16.
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The right side of Eq. 16 can be modified by using the integrated 
shear stress Eq. 9 and the Mohr circle definition for the 
shear stress in Eq. 12. This yields Eq. 17 and eliminates the 
mean stress term from the right side of Eq. 16. This allows 

complete separation of the mean stress and principle 
stress direction derivatives and leads to Eq. 18, which 
describes the change of principle stress direction (ω) with 
respect to the dimensionless radial coordinate (η).
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This differential equation must be bounded within the 
limits of integration to produce physically realizable 
solutions. Therefore, an analysis of the extreme points 
of this equation will yield limits on the principal stress 
direction angle. The denominator can become unbounded 
if sin(φ) equals cos(2ω). This results in Eq. 20 describing 
the maximum limit of principal stress direction angle. 

The numerator must also vanish at this value of ω to 
maintain a bounded solution. This yields a relationship 
between the dimensionless coordinate (η), dimensionless 
gas pressure gradient term (A), and internal friction 
angle (φ) (Eq. 21). The dimensionless coordinate ηmax 
is the largest possible radial position that can create a 
plastic stress field given a rathole diameter of Do. 

The maximum radius of the plastic field is then given by Eq. 22. 

Now at the surface of the rathole, η approaches 1, ω 
approaches 0, and σ1 approaches the unconfined yield 
strength fc. This implies the following relationship between 
unconfined yield strength (fc) and average stress level (σ). 

However, from the solution of the shear stress 
differential equation average stress can be 
related to the rathole diameter (Do). 

Eq. 23 and Eq. 24 can be combined to yield a relationship 
between the rathole diameter and the direction of major 
principal stress near the rathole surface (Eq. 25). 

L’Hospital rule must be used to evaluate this limit, resulting 
in the following equation for the rathole diameter. 

It is obvious from this equation that the derivative of the major 
principal stress direction, with respect to the dimensionless 
radial coordinate evaluated at the surface of the rathole (η=1), is 
required to determine a maximum limit to the critical rathole 
diameter. The G(φ,A) term defined above is four times the 
derivative of the principal stress direction with respect to the 
dimensionless radial coordinate (η). It is similar to the G(φ) term 
derived by Jenike, but includes gas pressure gradient terms. 
This derivative can be obtained by integrating Eq. 18 subject to 
the boundary condition η=ηmax at ω=π/4 − φ/2. Because of 
the complexity of the differential equation, integration must 
be done numerically. The integration proceeds backwards 
from the boundary condition at ηmax and terminates at η=1. 
The derivative of the principal stress direction angle (ω) with 
respect to dimensionless radial coordinate (η) evaluated at 
η=1 is then used to compute the critical rathole diameter. 
As a first approximation, gas pressure gradient terms are 
assumed constant. This is not strictly true and there will be 
some variation with both radial and axial position in the bin. 

A more accurate solution should involve the combined 
numerical solution of the limiting rathole equations along with 
the equations of motion describing gas flow through powder. 
However, the analysis provided in this paper can provide a first 
approximation to rathole stability in aerated process equipment. 
Figure 4 shows a typical solution to the differential equation. 
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This integration can be repeated for various values of (A) and 
internal angle of friction (φ) resulting in a new relationship 
for the G(φ,Α) function that includes gas pressure gradient 
terms (Figures 5 and 6). It is important to note that the radial 
component of the gas pressure gradient is responsible for 
rathole destabilization. The larger this gas pressure gradient, the 
more unstable the rathole becomes. The axial gradient term 
actually causes the rathole to be more stable by decreasing 
the effective gravitational forces acting on the rathole. 

Knowledge of the pressure gradients in a bin is required to 
compute an estimate to the critical rathole dimension. In 
reality, these gradients are functions of spatial coordinates. 
This is especially true of the radial pressure gradient. 
However, an estimate of this radial pressure gradient 
is obtained by assuming the gas pressure field can be 
approximated from the solution of a steady state Laplace 
equation describing permeable materials. If the gas is 
incompressible, the governing equation is described by Eq. 27.

If the gas is subject to isothermal 
compression, then Eq. 28 applies. 

For the purposes of this paper, Eq. 27 will be used. 
If the pressure gradient in the zdirection is constant 
and the pressure gradient in the θ-direction is small, 
then Eq. 27 can be expressed simply as a function 
of the radial coordinate resulting in Eq. 29. 
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Figure 4: Typical solution for aerated rathole equation

Figure 5: Jenike G factor as a function of internal friction angle 
(ø) at various dimensionless gas pressure gradients (A) 

Figure 6: Jenike G factor as a function of dimensionless gas pressure gradient 
(A) at several internal friction angles (ø) between 35Ε and 60Ε
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Normally the gas injection devices used to prevent ratholes 
are mounted at the bin wall surface. This can be approximated 
by a constant pressure boundary condition at the bin wall. 
The pressure at the rathole surface equals the atmospheric 
pressure. Therefore, Eq. 29 is subject to two constant 
pressure boundary conditions given in Eq. 30 and Eq. 31. 

This results in an analytical solution for the gas pressure as a 
function of radial position (Eq. 32). That solution will yield an 
equation for the radial gas pressure gradient (Eq. 33) showing 
an increase in the pressure gradient at the rathole surface. 

This can be combined with the definition of the dimensionless 
radial coordinate (η) given in Eq. 6 and substituted into 
the dimensionless pressure gradient term (A) found in 
Eq. 19 to yield a new dimensionless pressure gradient 
term that depends on the spatial coordinate and the 
size of the rathole relative to bin diameter (Eq. 34). 

The new A-value can be used in Eq. 18 to yield a new 
solution to the rathole equations that incorporates a variable 
radial pressure gradient. The solution of this equation can 
then be used in the standard rathole equation. The only 
difference is that the right side of Eq. 26 now depends 
on the critical rathole diameter and requires an iterative 
solution to compute the rathole dimension (Eq. 35). 

Figure 7 shows the new G-function for the case of an internal 
angle of friction of 40 degrees as a function of the ratio 
Dwall/Do and the overall average gas pressure gradient.

The last piece of information required to compute the critical 
rathole condition in aerated material is an estimate of the 
unconfined yield strength at aerated conditions and evaluated 
at solids contact stresses in the process equipment. As indicated 
previously, researchers have developed testers that measure 
these aerated cohesive properties as a function of solids contact 
stresses. These aerated flow functions can be used to estimate 
the aerated unconfined yield strength needed for this rathole 
analysis. However, the solids stress in the aerated equipment 
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must be known to determine the critical strength value for the 
rathole analysis. A Janssen analysis of a cylinder with gas effects 
could be used to estimate the solid contact stresses in a silo. 
Consider a differential slice of bulk material in a silo (Figure 8). 

The forces acting on this differential slice include the 
solids contact stresses, gas pressures, wall friction, and 
weight of the material within the slice. A force balance on 
this differential element results in differential Eq. 36. 

If the gradient in the axial direction is nearly constant, 
this differential equation can be integrated subject to 
a zero stress boundary condition at the top material 
surface to yield Eq. 37 describing the variation of stress 
as a function of axial distance from the top of the silo. 

This stress level could be evaluated at an axial position (z) equal 
to the height of the silo to determine an estimate of the solids 
contact stress for evaluation of the critical rathole diameter in 
silo geometries. This equation for the solid stress profile in the 
axial direction assumes that the gas pressure profile is linear 
along the height of the silo. For conditions where the axial 
gas pressure gradient varies with time, the most positive axial 
gas pressure gradient should be used to produce the more 
conservative solids contact stress for rathole calculations. Eq. 37 
should not be used in situations where the gas pressure gradient 
varies significantly with axial position. It should also be noted 
that gas pressure gradients in excess of the unit weight density 
will predict negative solids contact stresses. If this situation 
occurs, the gas pressure gradient is large enough to cause 
fluidization of the bulk material provided it is free flowing, or to 
develop channels with cohesive materials. In either case, the 
operation mode deviates from the homogenous contact bed 
conditions inherent in the Jansen stress field assumptions. The 
solids contact stress should be artificially set equal to zero along 
the length of the rathole. The procedure for computing the 
critical rathole dimension in aerated equipment is as follows: 

• �Estimate the axial gas pressure in the silo. 

• �Estimate the maximum solids contact stress in the 
silo with this gas pressure gradient. An accurate 
approximation to these stresses will require solving 
both the equations of motion for the gas and solid 
along with the continuity equations. A Janssen analysis 
with gas pressure gradient terms may provide an 
estimate of the critical stress level in the bin. 

• �Estimate the radial gas pressure gradient 
in the silo near the rathole surface. 

• �Estimate the strength of the bulk material at the 
maximum value of the aerated solids contact stress 
using the results of the aerated strength test.

• �Estimate the G(φ,Α) function from Figure 4 or 6 using the 
axial and radial estimates of the gas pressure gradients. 
(A) is the dimensionless gas pressure gradient term which 
includes the axial and radial gas pressure gradients. 

• �Use the above equations to compute the critical 
rathole diameter for the particular geometry. 

A numerical example may help to illustrate this procedure. 
Consider the simple case where the local gas pressure gradients 
are approximately constant. Please note that this condition 
may not be the exact condition in aerated bins. Actual pressure 

Figure 8: Janssen analysis on aerated material
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gradients will depend on the position in the silo. Suppose the 
conditions and flow properties given in Table I apply to the silo. 

One of the important conclusions of previous work done by 
Barletta [4], Johanson and Barletta [5], and Kline et. al. [6] is 
that the unconfined yield strength does not change much if 
the pressure gradient is below some critical value near the 
fluidization limit. This implies that cohesive flow properties 
in slightly aerated conditions could be approximated by 
the measured flow properties in non-aerated conditions. 
However, this is not true for conditions near fluidization and at 
conditions in converging conical funnel flow geometries. Thus, 
for the purposes of this example, the influence of aeration on 
the critical rathole dimension in cylindrical geometries and 
pressure gradients less than those required for fluidization 
will be investigated. The procedure could be applied to more 
complex situations but the additional complexity would cloud 
the clarity of this example. Suppose, for the sake of example, 
that the aerated unconfined yield strength could be expressed 
as a function of major principal stress described in Figure 9. 

The first step in the procedure above is to estimate the solids 
stress in the silo using Eq 37. This analysis suggests that the 
flow properties for rathole analysis should be evaluated at a 
stress of 63.4 kPa. It is important to point out that this stress 
is an estimate of the largest major principal stress in the silo 
over the storage and filling history for the particular silo. This 
aerated stress would apply for the case where aeration was 
used on the silo during filling to keep material in a flowable 
condition. It would not apply to the case where the silo 
was filled and the aeration system was then turned on in 
an intermittent mode. The overall maximum solids stress 
for the intermittent or on-demand gas injection condition 
would be closer to the non-aerated stress conditions. In 
fact, processes that use aeration to control the flowablity of 
bulk materials have observed that flow problems arise if the 
material within the silo becomes deaerated just once. These 
cohesive deaerated materials are then very difficult to reaerate 
and result in persistent rathole problems. It is hoped that this 
paper will help explain some of these industrial observations. 

Once the maximum stress state in the aerated silo is 
determined the critical strength for rathole calculation 
can be evaluated using the flow function for the particular 
aeration condition. In this simple example, the effect of small 
to moderate gas pressure gradient on the critical rathole 
dimension are examined and the flow function that applies is 
the non-aerated condition given in Figure 9. This implies that 
at a solids stress level of 63.4 kPa the critical strength value for 
stable rathole formation equals 16.1 kPa. The last step in this 

Property or Aeration Condition Numerical Value

Bulk density (γ) 960 kg/m3

Radial gas pressure gradient  
(ΜP/Μr), (ΜP/Μr / γ g = 0.4) 3.76 kPa/m

Axial gas pressure gradient  
(ΜP/Μz), (ΜP/Μrz / γ g = 0.05) 0.47 kPa/m

Internal friction angle (φ) assumed to 
be constant and not a function of gas 
pressure gradient or solid contact stress

40 degrees

Wall friction angle on silo wall (φw) 20 degrees

Silo Diameter (D) 5 meters

Silo Height (z) 15 meters

Silo Janssen K-ratio 0.4

Table I: Flow properties and conditions for rathole calculation example

Figure 9: Flow function of aerated material for example rathole calculations 
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simplified calculation of aerated critical rathole dimension is 
to determine the dimensionless gas pressure gradient ratio (A) 
as given by Equation 19 for constant gradient conditions. This 
pressure gradient ratio (A) equals -0.421 for the conditions given 
in Table 1. Figure 6 can then be used to determine the critical 
rathole factor G used to compute the critical rathole dimension 
from Equation 26. The entire procedure then yields 3.73 m 
for the aerated critical rathole dimension. The corresponding 
critical rathole dimension for non-aerated conditions is 6.59 
m suggesting that the assumed aeration conditions for this 
example case will decrease the rathole tendency to almost 
half the value of the non-aerated rathole dimension. Thus, 
controlling the aeration to conditions in this example bin 
could significantly reduce the size of the active flow channel 
needed to overcome stable rathole formation. It is important 
to point out that in this example the critical rathole dimension 
for non-aerated conditions was greater than the diameter of 
the bin. This implies that steps must be taken to expand the 
active flow channel to the full bin diameter to prevent stable 
rathole formation. If aeration is used then mass flow must 
only be induced up to the 3.73 m diameter and partial mass 
flow designs with controlled aeration could be used. This 
may produce some cost savings in the required bin design. 

A similar analysis could be done for the case where gas 
pressure gradients are a function of radial position. In 
this case, equation 34 should be used for a calculation 
of the dimensionless gas pressure gradient (A). In this 
situation, the A term depends on the critical rathole 
diameter and will require iteration using equations 34 and 
35 to obtain a solution to the critical rathole diameter. 

A parametric study of the influence of pressure gradients on 
rathole stability can be done using the example data in Table 
1 and Figure 9 to show the qualitative behavior including 
gas pressure gradient terms in the rathole limiting stress 
state equations. Figure 10 shows the expected behavior 
using the example data. The rathole reduction factor is 
found by dividing the computed rathole dimension from the 
analysis above by the standard nonaerated critical rathole 
dimension from the Jenike method. The strength values 
needed for this analysis were taken from the example flow 
function given in Figure 9. This figure indicates that rathole 
stability can decrease to about 60% of the non-aerated 
value depending on the radial and axial pressure gradients. 

Conclusions  
The rathole analysis presented in this paper extends the Jenike 
analysis to aerated conditions. The resulting theory predicts 
a decrease in the critical rathole diameter as gas pressure 
gradients acting in the negative r-direction increase. This is 
intuitively reasonable since the support of ratholes originates 
in the z-direction. Normal stresses perpendicular to this 
direction can provide additional body forces required to fail 
these circumferential cohesive arches (i.e. ratholes). However, 
increasing the gas pressure gradient in the z-direction will 
increase the stability of the rathole. This occurs because the 
upward acting axial gas pressure gradient partially supports 
the material weight making the material behave as if it were 
lighter than expected. If the cohesion is the same then lighter 
material will produce smaller solids contact stresses and 
result in less stress available to break or destabilize ratholes. 
The net result is to create more stable ratholes with axial gas 
counter-flow. Flow aid devices designed to maximize radial 
gas pressure gradients may overcome rathole problems 
provided they are placed close to the rathole free surface. 
This paper provides some preliminary theoretical guidance in 
using aeration devices to overcome stable rathole formation 
in process equipment. It is hoped that this work can be refined 
through Experimental confirmation and industrial observation 
of rathole stability which will be a subject of future work. 

Figure 10: Rathole reduction factor as a function of radial and axial gas pressure 
gradient using example parameters given in Table 1 and assuming constant 

gas pressure gradients and the flow function behavior given in Figure 9 
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Nomenclature:

A Dimensionless pressure gradient body force ratio. 

D Bin diameter as a function of axial position 

Do Critical rathole diameter 

Dwall Cylindrical bin diameter 

fc Unconfined yield strength 

G(φ,Α) Critical rathole G factor 

H The projected linear yield locus normal tensile stress 

K Janssen k-value ratio of stress normal to the wall to the 
vertical stress in the axial direction. Typically equals 0.4 

P Gas pressure 

Patm Gas pressure at rathole surface 

∆P Difference between gas pressure at bin 
wall and gas pressure at rathole surface 

r Radial position 

Ro Radial position of rathole surface 

Rwall Radial position of bin wall 

γ Powder bulk density 

η Dimensionless radial position 

ηmax Maximum value of the dimensionless 
radius that will produce a stable plastic field 

φ Internal friction angle 

φw Wall friction angle 

σr Normal stress on the plane perpendicular to the 
radial direction in a cylindrical coordinate system 

σθ Normal stress on the plane perpendicular to 
the direction in a cylindrical coordinate system 

σz Normal stress on the plane perpendicular to the 
axial direction in a cylindrical coordinate system 

σ Mean limit stress 

σ1 Major principal stress 

σ3 Minor principal stress 

σv Average vertical stress for Janssen analysis 

σh Stress normal to cylinder wall for Janssen analysis 

τrz Shear stress on the plane perpendicular to 
the radial direction acting in the axial direction 
in a cylindrical coordinate system 

τrθ Shear stress on the plane perpendicular to 
the radial direction acting in the θ−direction 
in a cylindrical coordinate system 

τθz Shear stress on the plane perpendicular 
to the θ−direction acting in the axial direction 
in a cylindrical coordinate system 

τw Shear stress on the wall for Janssen analysis 

ω Angle between the minor principal stress 
and the r-coordinate direction
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